Diagnosis of Mitochondrial Disease in the South African Context
(a laboratory perspective)

Francois van der Westhuizen, PhD
Focus Area for Human Metabolomics
"Energy metabolism disorders"

- Disorders involving energy metabolism:
 - *Rare (monogenic) disorders of*
 - OXPHOS, fatty acid oxidation, TCA cycle, creatine biosynthesis, ketolysis, enolase, gluconeogenesis, glucophosphate isomerase, phosphoglycerate kinase kinase 1, pyruvate metabolism, triose phosphate isomerase
 - "Common" diseases (incl. non-communicable/infectious/toxin induced)
 - Neurodegenerative, cardiovascular, type 2 diabetes, autoimmune, cancers, AIDS/HIV-treatment, and many more.

"Mitochondrial disorders" vs. "mitochondrial disease" vs. "mitochondrial respiratory chain disease" vs. "mitochondrial DNA disease"; “primary/secondary”
Why the heterogeneity?

1. Central role of proton-motive force ($\Delta \rho$)

Adapted from *Bioenergetics 4*, Nicholls & Ferguson
2. Genetics of OXPHOS and the “Threshold Effect”

Why the heterogeneity?
Why the heterogeneity?

Mitochondrial Threshold Effect

Phenotype

% mtDNA mutated
(OXPHOS dysfunction)
Why the heterogeneity?

3. Mitochondrion-nucleus communication
Clinical Selection

Mitochondrial disease syndrome? (or mutation in family)

Clinical phenotype suggestive of mitochondrial disorder?

Yes

Tissue biopsy (+/- Fibroblasts)

Biochemical evaluations
Enzyme/functional/structural analyses/histopathology

Molecular genetics

Screen for specific mtDNA/nDNA mutations

mtDNA sequence

mtDNA depletion

mtDNA integrity

nDNA genes sequencing

Exome sequencing

Biochemistry

Yes

+/- Metabolic investigations
Populations of African origin carry up to 3x as many rare variants as European or East Asian populations.

Nature DOI: 10.1038/nature11632
Census 2011: South African population groups

Demographics
- African (78.4%)
- White (9.1%)
- Coloured (8.9%)
- Indian/Asian (2.6%)
- None dominant
Genetic diversity

Where to find information when accessing genetic variation?

• 1000 Genomes Project
• Southern African Human Genome Project
• Other & “in house” data

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Name</th>
<th>Location of origin</th>
<th>Linguistic group</th>
<th>Y chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB1</td>
<td>!Gubi</td>
<td>Southern Kalahari</td>
<td>Tuu-speaker</td>
<td>B2b</td>
</tr>
<tr>
<td>NB1</td>
<td>G/aq’o</td>
<td>Northern Kalahari</td>
<td>Juu (Ju’hoansi)</td>
<td>A3b1</td>
</tr>
<tr>
<td>TK1</td>
<td>D###ggao</td>
<td>Northern Kalahari</td>
<td>Juu (Ju’hoansi)</td>
<td>A2</td>
</tr>
<tr>
<td>MD8</td>
<td>!Aî</td>
<td>Northern Kalahari</td>
<td>Juu (!Kung)</td>
<td>E1b1b1</td>
</tr>
<tr>
<td>ABT</td>
<td>Tutu</td>
<td>South Africa</td>
<td>Bantu (Xhosa/Tswana)</td>
<td>E1b1a8a *</td>
</tr>
</tbody>
</table>

Should we investigate (considering no treatment as yet)?

How should it be structured considering separated capacities?

How do we approach – from which side?
MD (NWU/UP) study cohort

Steve Biko Academic Hospital (Pretoria, since 2006)
- ~6000 paediatric referrals to neurology clinic
- Clinical evaluations, including MD scoring
- 200 patients undergo muscle biopsy, urine collection

Cohort (200):
- Mpumalanga, Gauteng, Limpopo (from 8.4 million children)
- Black African 61%, White/Caucasian 32%, other 7%
- Equal gender

Muscle Biochemistry
- Muscle RC enzyme kinetics + PDHc
- Respirometry (pilot)
- Native PAGE (selected)
- Histochemistry (selected)

Molecular genetics
- mtDNA copy nr (muscle)
- mtDNA sequencing
- nDNA, CI – CIV, CoQ structural & associated genes

Metabolomics
- Mass spectrometry & NMR
- Aim: to investigate value of urine metabolites to better select and diagnose patients

Poster: Maryke Schoonen
Lecture: Roan Louw
Poster: Karien Esterhuizen
Diagnostic & Research strategy

Clinical Selection

Mitochondrial disease syndrome? (or mutation in family)

Clinical phenotype suggestive of mitochondrial disorder?

• Clinical scoring criteria (NCMD)
• Metabolic biosignature in urine

+/- Metabolic investigations

Biochemistry

Muscle biopsy (+/- Fibroblasts)

Biochemical evaluations

• RC single enzymes activities & PDHc
• Structural analyses (Native/denaturing PAGE)
• CoQ10 levels

Histopathology - NHLS

• Muscle morphology
• Subsarcolemmal mitochondrial accumulation (ragged red fibres)
• COX/SDH differential staining

Molecular Genetics

Screen for specific mtDNA/nDNA mutations in blood/urine

mtDNA sequence
• Full-length mtDNA sequencing
Variant detected
• Family study to investigate mutation segregation
• Specialized investigations to determine pathogenicity

mtDNA depletion
• Real-time PCR
Depletion detected
• Screening for mutations or sequencing of genes associated with mtDNA depletion

mtDNA integrity
• Long-range PCR
Deletion detected
• Screening for mutations or sequencing of genes associated with mtDNA deletion

nDNA genes investigations

• Screening for mutations or sequencing of selected nuclear genes
• Specialized investigations to determine pathogenicity

Black – routinely done
Red – not routinely done
Enzyme analyses Muscle Biopsies

Frozen Muscle
• Frozen muscle (vastus lateralis), transported dry ice
• 600 x g homogenates
• CI-CIV, CII+III + markers: citrate synthase (CS) & protein
• Reference ranges (n = ~70), normalized to CS, CII & CIV
Clinical & Biochemical profile

- Heterogeneous clinical profile, few “classical”/syndromic phenotypes
- Black African patients predominantly muscle phenotype*

RC enzyme deficiencies:

- 129/200 (65%)
 - 65 Single enzyme (50%)
 - 42 CI (65%)
 - 4 CII (6%)
 - 15 CIII (23%)
 - 4 CIV (6%)
 - 64 combined enzyme (50%)
 - 40 CII+III (63%)
 - 24 other (37%)

*Smuts et al, 2010, J Inh Met Dis;
Molecular Genetics - strategy

Patients
Selection based on clinical & RC enzyme data

mtDNA sequencing (16.5 kbp)
- 112 patients, two overlapping PCR fragments
- Bar coding, Roche 454 and Ion Torrent PGM sequencing
- Average base coverage: ~200

Data analysis
- Align to rCRS & identify variants (*Variant Caller/CLCBio*)
- Classify variants: High/low confidence
- Assign haplogroups (*Mitovariome/Phylotree*)
- Identify novel/previoulsy reported pathogenic variants using panel of databases (*dbSNP, MITOMAP, mtDB, mtSNP, Google*)
- Classify novel variants: damaging or less damaging – *Alamut, MitoTool*

Assessing pathogenicity
- Novel candidate pathogenic variants: Case-by-case, genetics, structural and functional (cybrids + Seahorse XF® 96) analyses

Nuclear DNA sequencing (550 kbp coding)
- 128 patients (grouped based on deficiency)
- Target enrichment, Ampliseq (either CI, CII, CIII, CIV, CoQ10 panels); Ion Torrent PGM, 318 chip
- Average base coverage: ~250

Data analysis
- Torrent Suit (v5.0.2): alignment and variant calling
- Secondary data analysis: Ensemble variant effect predictor (VEP runner V85)
- Data mining: GEMINI (V0.18.)
 - Identify previously reported and novel variants
 - Identify previously reported pathogenic variants

Assessing pathogenicity
- Novel candidate pathogenic variants: Case-by-case, genetics, structural and functional analyses
Molecular Genetics – Results summary

• mtDNA investigations*:
 □ General lack of common pathogenic mtDNA variants
 □ 11 previously reported disease-associated variants
 □ Conflicting reports on pathogenicity of previously reported mutations
 □ Large number of novel variants (significantly more in African patients)
 □ 20 candidate novel possible pathogenic variants in 39 cases
 □ Pathogenicity evaluations key
 □ **Two confirmed cases with mtDNA involvement (large deletion; m.14484 T>C), = ~1% prevalence**

• nDNA investigations (*Maryke Schoonen poster*):
 □ At least 9 genes in 30 patients identified
 □ Confirmation of these cases required

* van der Westhuizen et al, 2010, J Inh Met Dis 33, S55-62
van der Walt et al, 2012, Eur J Hum Genet 20, 650-656
van der Westhuizen et al, 2015, Human Mut 36, 569-571
Metabolome investigations in MD

Lecture: Roan Louw
Conclusions and Future directions

• MD diagnostics:
 - Sufficient local expertise available
 - Research environment required - fundamental understanding of bioenergetics, mitochondrial physiology & metabolism, and human genetics

• Paediatric cohort (UP neurology clinic):
 - Biochemical evaluations valuable, but can improve
 - Metabolomics: potential proven
 - Molecular genetics:
 - mtDNA involvement lower than norm (~1% cases)
 - nDNA wide ranging candidates (~15% cases)
 - Differs from data from NHLS referrals
 - More SA population genetic data required, and for patients a more extensive genomic approach at this time

• South Africa/Africa:
 - Patients access to specialized clinics very low
 - Collaboration & networks of specialized expertise
 - Consolidated national diagnostic strategy (processes, funding, research etc.)
Acknowledgements

South Africa

Human Metabolomics, NWU
 Roan Louw
 Elizna Schoeman
 Maryke Schoonen
 Hanli du Toit
 Madelein Meissner-Roloff
 Lindi-Maryn Jonck
 Kimmey Wilsenach
 Karien Esterhuizen

Department of Paediatrics and Child Health, Steve Biko Academic Hospital, University of Pretoria
 Izelle Smuts

NHLS, University of Cape Town
 Surita Meldau
 Gill Riordan

The Netherlands

Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre,
 Jan Smeitink
 Richard Rodenburg

United Kingdom

Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University
 Rob Taylor
 Doug Turnbull
 Joanna Elson